Polar Transform of Spacelike Isothermic Surfaces in 4-Dimensional Lorentzian Space Forms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polar transform of Spacelike isothermic surfaces in 4-dimensional Lorentzian space forms

The conformal geometry of spacelike surfaces in 4-dimensional Lorentzian space forms has been studied by the authors in a previous paper, where the so-called polar transform was introduced. Here it is shown that this transform preserves spacelike conformal isothermic surfaces. We relate this new transform with the known transforms (Darboux transform and spectral transform) of isothermic surface...

متن کامل

Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms

Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in S, are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them holds...

متن کامل

Twistorial constructions of spacelike surfaces in Lorentzian 4-manifolds

We investigate the twistor space and the Grassmannian fibre bundle of a Lorentzian 4-space with natural almost optical structures and its induced CR-structures. The twistor spaces of the Lorentzian space forms R 4 1, S 4 1 and H 4 1 are explicitly discussed. The given twistor construction is applied to surface theory in Lorentzian 4-spaces. Immersed spacelike surfaces in a Lorentzian 4-space wi...

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

spacelike hypersurfaces in riemannian or lorentzian space forms satisfying l_k(x)=ax+b

we study connected orientable spacelike hypersurfaces $x:m^{n}rightarrowm_q^{n+1}(c)$, isometrically immersed into the riemannian or lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~l_kx=ax+b$,~ where $l_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $h_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Mathematics

سال: 2008

ISSN: 1422-6383,1420-9012

DOI: 10.1007/s00025-008-0317-1